Loading

Wednesday, February 11, 2015


       It was a dark and a little bit cold night. One of my friends suggested to go outside to wacth the stars. We started from the cabana we lived in, each with a torch in hand. At first we just wanted to go around and appreciated the beautiful sky decorated by many stars. But later we decide to do go further . all new thought about was walking and talking. Is was unfortunate that we went into the forest and got lost.
       When we found we were lost, it was too late to find the original way back to the cabana. I grasped my friends hand firmli. The cold and strong wind blew against my face all the time. It whispered through the trees. Whats more, the fog quickly became thick. Terrible fear came to my mind and made me tremble out of my control. I was scared to death. The only idea in my brain was that it was the end of my life. It was impossible for me to get out the forest. Even though my friend tried to convince me that nothing bad would happen to us and we were safe and sound, i still feared that we would come to a messy end.
       It was hard to find the way clear because of the dense fog. It made us lose the sense of direction totally. We didnt know which way to go next. Suddenly , a man with a torch stood in front of us. At first, it frightened us stiff. We dared not open our eyes until he came to pat us on our shoulders and told us that if we were lost, he would help us to find the way back. At that moment, i wasrelieved because i knew i wouldnt stay in the forest forever. This kind man led us out, it was he who ended this terrible experience of getting lost.
       It was really an unforgettable experience in my life. I will not forget such a special experience

       In a very little quiet village, lived an old man whose age was over 80 years old. He planting a durian treewhen a neighbour observed him. The neighbour asked the old man, “do you expect to eat durian from the tree? The durian  tree will take about eight years to bear fruit.”
      The old man rested on his spade and smiled. He said, “no, at my age i know i won’t.all  my life i have been enjoying durians, but never from the tree i have planted before, i wouldn’t have had durians if other men haven’t done what i am doing now. I am just trying to pay the other men who have planted durians for me. “ no wonder he looked so happy.  We would give first and can get something in return. We will not only get what we want, but we willl actually be really happy in the end, because we need to sow first before we can reap.

          Labuhan sesaji is one of traditional events in java. Labuhan Sasaji or offering sacrifice ceremony is held  once a year . People throw Labuhan Sasaji to te sea to please goddness of the South Sea and Kanjeng Ratu Kidul. The people do it to celebrate the king of yogyakarta promotion Day.
         There are two kinds of Labuhan Sesaji. They are Labuhan Ageng and Labuhan Atit. Labuhan Alit is an annualy ceremony to celebrate the day of the king promotion. The other one is held when there is a new king promotion.
         This ceremony is carried out the three places. The places are Parang Kusuma, Mount Lawu, and Mount Merapi. The central place of the ceremony is at Parang Kusuma. This place is considered  the gate into the palace or the kingdom of kanjeng. Ratu kidul. The day before the ceremony lasts there, people climb Mount Merapi and Mount Lawu to do ceremony there.
         The existence of labuhan has lasted since a long time. At the firts over, it happened after Raden Suto Wijoyo, the King of mataram Kingdom. In celebrating Labuhan, the people wear traditional costumes. Man wears hat dester , coat with closed collar, and keris while woman wears a long blouse over skirt wrapping. The costumes are batik- both man and woman wear the same colourful batik.

Tuesday, February 10, 2015

Quality Improvement
EMAS tackles high maternal and newborn mortality rates in Indonesia through facility and health provider strengthening. In the EMAS model, master hospitals and health centers—known as Vanguards—regularly mentor other hospitals and health centers. When these recipient facilities reach a minimum standard of excellence, they too become mentors helping to propagate a quality assurance cycle.
In EMAS' first two years, local partner Budi Kemuliaan was the primary trainer for EMAS Vanguards. In EMAS’s third year beginning October 2013, Budi Kemuliaan takes on an advisory role and it is the Vanguards which are now tasked to expand to another 47 hospitals and 89 health centers (Puskesmas).
EMAS interventions are targeted towards preventing and treating the main causes of maternal and neonatal death. For pregnant mothers this is post-partum hemorrhage, eclampsia, sepsis and obstruction. For newborn babies this is asphyxia, complications of prematurity, infection and respiratory distress.
At the facility level, this means that EMAS facilities are staffed and stocked according to national standards and that EMAS hospital and Puskesmas regularly monitor their performance using clinical dashboards. The dashboards provide quick, clear data on medical staff to patient ratios, rate of adherence to evidence based protocols, percentage of deliveries resulting in referral or C-section, number of emergency drills conducted and deaths by month with the proportion audited, among other medical quality indicators.
At the provider level, this means doctors, nurses and midwives in EMAS facilities both possess the skill to care for sick patients and adhere to the highest standards of care.  EMAS has begun rolling out decision support tools (DST) to provide more focused context for mentoring. DST are essentially formal checklists. The checklists ensure, for example, that a 2 kilogram baby born at 1 a.m. in a small EMAS Puskesmas goes through the same process of care as a 3 kg baby born at 12pm at a large RSUD Hospital in Tegal. Health care providers will not need to remember the indications for and dose of antibiotics due to treat premature rupture of membranes because they will already be identified for them. They only need to check the box.
Whatever the level of intervention, EMAS will achieve its goals through mentorship and side-by-side work with staff, providers and leaders in Indonesia's health community.  We will measure and report on our results.

Tuesday, January 6, 2015

abstrak

Kekurangan mikronutrien dalam Kehamilan Dini Apakah umum, Concurrent, dan Vary dengan Season antara Pedesaan Nepal Wanita Hamil


Kekurangan icronutrient di Awal Kehamilan Apakah Co

MMON, Concurrent, dan Vary dengan Season antara Pedesaan Nepal Wanita Hamil 1
  1. Keith P. Barat Jr
  1. Center for Human Nutrition, Departemen Kesehatan Internasional, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, dan
  2. * Nepal Nutrisi Proyek-Sarlahi Intervensi (NNIPS), Nepal Netra Jyoti Sangh, Tripureswor, Kathmandu, Nepal
  1. 2 Untuk siapa korespondensi harus ditangani. E-mail: pchristi {at} jhsph.edu .

Abstrak

Wanita hamil di negara-negara berkembang yang rentan terhadap berbagai kekurangan mikronutrien. Kami menyelidiki prevalensi dan variasi musiman sebagai bagian dari penilaian dasar dalam berbasis populasi, ibu percobaan suplementasi mikronutrien yang dilakukan di dataran Tenggara pedesaan Nepal. Konsentrasi serum 11 mikronutrien dinilai dalam 1.165 wanita hamil pada trimester 1 sebelum suplementasi. Menggunakan nilai cutoff didefinisikan, prevalensi kekurangan vitamin A, E, dan D adalah 7, 25, dan 14%, masing-masing. Hampir 33% dari wanita yang kekurangan riboflavin, dan 40 dan 28% memiliki serum vitamin B-6 dan B-12 kekurangan masing-masing. Hanya 12% dari wanita yang kekurangan folat, tapi 61% adalah kekurangan seng. Prevalensi konsentrasi besi serum rendah adalah 40%, dan 33% adalah anemia (hemoglobin <110 g / L). Beberapa kekurangan mikronutrien yang umum di kalangan wanita hamil. Lebih dari 10% dari wanita hamil berdua anemia dan kekurangan vitamin B kompleks, sedangkan 22% wanita berdua anemia dan kekurangan seng. Hanya 4% perempuan tidak memiliki kekurangan, sedangkan ~ 20% dari perempuan memiliki 2, 3, atau 4 kekurangan. Hampir 18% wanita memiliki ≥5 kekurangan. Status gizi mikro bervariasi oleh musim; itu umumnya terbaik selama bulan-bulan musim dingin, kecuali untuk konsentrasi vitamin D serum, yang memuncak selama musim panas dan musim panas bulan. Perempuan di Asia Selatan pedesaan cenderung memulai kehamilan dengan beberapa kekurangan mikronutrien yang mungkin berbeda dengan musim ketersediaan makanan kaya mikronutrien.
Defisiensi mikronutrien pada wanita usia reproduksi diakui sebagai masalah kesehatan masyarakat yang utama di banyak negara berkembang ( 1 - 4 ). Wanita hamil sangat rentan terhadap kekurangan gizi karena tuntutan metabolik meningkat dikenakan oleh kehamilan melibatkan plasenta berkembang, janin, dan jaringan ibu, ditambah dengan risiko diet terkait ( 5 , 6 ). Pada gilirannya, gizi ibu dapat mempengaruhi ibu untuk kesehatan yang buruk, termasuk infeksi, pre-eklampsia / eklampsia, dan hasil yang merugikan kehamilan seperti kelahiran prematur dan retardasi pertumbuhan intrauterin ( 1 , 2 ). Defisiensi mikronutrien cenderung untuk hidup berdampingan dalam pengaturan miskin sebagian karena konsumsi seragam rendah makanan yang kaya akan berbagai zat gizi mikro.
Kekurangan zat besi dan anemia ibu konsekuen terdiri masalah besar di negara-negara berkembang, yang mempengaruhi> 50% wanita selama kehamilan ( 1 - 3 ). Defisiensi mikronutrien lain cenderung banyak terjadi, terutama yodium, seng, vitamin A, dan vitamin B-kompleks ( 1 - 3 , 7 ). Namun, sedikit informasi yang tersedia pada tingkat keparahan dan beberapa kekurangan mikronutrien selama kehamilan dalam studi berbasis masyarakat ( 8 , 9 ). Kebanyakan data status vitamin berasal dari populasi pilih, pengaturan berbasis rumah sakit, atau dari studi cross-sectional di mana status gizi dinilai pada berbagai titik waktu tunggal selama kehamilan. Karena kekurangan mikronutrien marjinal pada trimester 1 dapat menyebabkan defisiensi lebih parah di kemudian hari karena tekanan yang dikenakan oleh kehamilan dan partus ( 10 ), status gizi pada awal kehamilan mungkin merupakan prediktor penting dari risiko gizi pada akhir kehamilan ( 8 ). Selain itu, musim tampaknya nyata mempengaruhi prevalensi defisiensi ( 7 , 11 , 12 ), yang kadang-kadang menyebabkan pola dan interpretasi defisiensi mikronutrien tak terduga.
Dalam studi sebelumnya, kami mendokumentasikan prevalensi tinggi vitamin A dan anemia defisiensi besi pada ibu hamil Nepal ( 13 - 15 ) pada berbagai tahap kehamilan. Dalam penelitian ini, kami meneliti prevalensi defisiensi vitamin A, E, D, riboflavin, B-6, B-12, asam folat, seng, besi, dan tembaga selama awal kehamilan (<12 minggu) pada populasi pedesaan wanita hamil Nepal menggunakan diterbitkan nilai cutoff serologi. Koeksistensi beberapa kekurangan dan variasi musiman dalam status mikronutrien juga diperiksa.

SUBYEK DAN METODE

Desain penelitian dan populasi.

Studi dimanfaatkan data dasar saat ini dikumpulkan dari,, percobaan terkontrol acak klaster-double-bertopeng dilakukan di dataran Tenggara Kabupaten Sarlahi, Nepal, dari Desember 1998 sampai April 2001 ( 15 , 16 ). Tujuan utama dari percobaan ini adalah untuk memastikan efek suplementasi ibu sehari-hari dengan asam folat, asam folat + zat besi, asam folat + besi + seng, dan formulasi mikronutrien beberapa, semua dengan vitamin A, dibandingkan dengan plasebo aktif (mengandung vitamin A saja), mengurangi berat badan lahir rendah, kematian janin, dan kematian bayi dan morbiditas. Studi ini disetujui oleh komite peninjau etik Departemen Kesehatan di Nepal dan Johns Hopkins Bloomberg School of Public Health di Baltimore, MD.
Untuk mengidentifikasi kehamilan pada kehamilan awal, semua perempuan yang memenuhi syarat usia reproduksi (perempuan menikah, 15-45 y usia yang tidak menopause, disterilkan, atau belum menyusui bayi <12 bulan usia) di daerah penelitian dikunjungi setiap 5 minggu dan dimonitor untuk kehamilan. Kehamilan dipastikan dengan tes urine (tes antigen human chorionic gonadotropin, Clue, Anggrek Biomedical Systems) pada wanita yang sempat dikabarkan tidak haid di masa lalu 30 d. Wanita yang diuji positif yang terdaftar setelah mendapat persetujuan. Pada saat pendaftaran, wanita hamil yang baru diidentifikasi yang diadministrasikan wawancara dasar untuk memperoleh data pada frekuensi 1-minggu gejala kesakitan, asupan makanan, alkohol, dan penggunaan tembakau, dan informasi mengenai status sosial ekonomi rumah tangga. Pengukuran antropometri termasuk berat badan, tinggi badan dan lingkar lengan pertengahan atas (LILA) 3 pengukuran.
Dari 30 komunitas pembangunan desa, yang terdiri dari sekitar sepertiga dari total di daerah penelitian, 9 dipilih untuk mewakili komunitas geografis dan etnis yang berbeda; semua memiliki akses masuk ke jalan utama dan relatif dekat dengan laboratorium proyek. Wanita dari komunitas ini diundang untuk berpartisipasi dalam subpenelitian melibatkan pengumpulan darah vena untuk analisis serum selanjutnya status mikronutrien dua kali selama kehamilan, sebelum suplementasi dan pada trimester ketiga. Sampel diambil melalui venipuncture dan dikumpulkan menjadi 7-mL jejak bebas logam-tabung vakum (Vacutainer, Becton Dickinson). Para Vacutainers mengandung darah terus es dan dibawa ke klinik di mana mereka disentrifugasi pada 750 × g selama 20 menit untuk memisahkan serum. Aliquots serum ditempatkan ke jejak elemen-bebas cryotubes (Nalgene Perusahaan, Sybron International), disimpan dalam tangki nitrogen cair, dan dikirim ke Johns Hopkins Bloomberg School of Public Health di Baltimore, MD, di mana mereka disimpan pada -80 ° C sebelum analisis.

Analisis laboratorium.

Hemoglobin (Hb) penilaian dilakukan di tempat menggunakan homeglobinometer (HemoCue). Konsentrasi serum feritin dianalisis dengan prosedur ELISA menggunakan alat tes fluoroimmunometric komersial (DELFIA® Feritin, Perkin Elmer Wallac). The interassay CV untuk feritin adalah ~ 5%, dengan menggunakan sampel serum dikumpulkan. Besi, seng, dan konsentrasi tembaga serum dianalisis dengan spektrometri serapan atom (AAnalyst 600, Perkin Elmer). Folat serum diukur dengan alat tes mikrobiologi di 96-baik microplates menggunakan strain kloramfenikol tahan dari Lactobacillus rhamnosus (NCIMB 10463) ( 17 ). Serum vitamin B-12 ditentukan dengan alat tes mikrobiologi di 96-baik microplates menggunakan strain colistin-sulfat tahan dari Lactobacillus lactis (NCIMB 12519) ( 18 , 19 ). Kedua mikroorganisme yang cryopreserved dan budaya yang stabil selama berbulan-bulan. CV interassay untuk folat dan vitamin B-12 adalah 7,6 dan 8,4%, masing-masing. Konsentrasi D 25-hydroxyvitamin serum digunakan untuk mengevaluasi status vitamin D, ditentukan dengan metode immunoassay dengan kit dari Nichols Institute. The antar dan intra-assay Riwayat Hidup adalah 16,4 dan 5,6%, masing-masing.
Serum retinol, β-karoten, dan α-tokoferol ditentukan bersamaan dengan fase-balik HPLC (Beckman, Sistem Emas) yang melekat pada sebuah autosampler (717 Ditambah AS, Waters) dengan menggunakan prosedur yang dijelaskan oleh Yamini et al. ( 20 ) dengan modifikasi. Standar internal yang digunakan adalah semua- trans -ethyl-β-apo-8'-carotenoate (Fluka Chem). Kolom (Allsphere ODS-2, 3 m, 150 × 4,6 mm, Alltech Asosiasi) dielusi isocratically dengan fase gerak yang terdiri dari 84% asetonitril, 14% tetrahidrofuran, 6% metanol (naik 0,2% amonium asetat), dan 0,1% trietilamina. Kontrol kualitas dipertahankan oleh analisis diulang bahan standar acuan (SRM, 968c, Institut Nasional Standar dan Teknologi, NIST, Gaithersburg, MD) dan standar referensi dikumpulkan. Ketepatan dan keakuratan metode juga dinilai melalui partisipasi dalam Mikronutrien Pengukuran Quality Assurance Program Round Robin Proficiency Testing dari NIST, di mana 12 "tidak diketahui" sampel dianalisis dan disampaikan tahunan untuk masa penelitian.
Serum riboflavin konsentrasi ditentukan sebagai pengganti untuk riboflavin menggunakan reverse-fase HPLC (model 1100, Agilent Technologies) dengan detektor fluoresensi (Model FP-1520, Jasco). Sebelum HPLC, 50 uL serum deproteinized menggunakan asam trikloroasetat, dan supernatan dipanaskan selama 15 menit. HPLC dilakukan dengan menggunakan C 18 -dilapisi silika kolom (Alltech) dengan fase gerak yang terdiri dari 65% (v: v) 5 mmol / L amonium asetat dan 35% (v: v) metanol. Eksitasi fluoresensi dan emisi panjang gelombang yang 460 dan 525 nm, masing-masing. Konsentrasi terdeteksi minimum adalah 0,35 nmol riboflavin / L. Intra dan CV interassay adalah 1,5 dan 4,8%, masing-masing, dengan menggunakan serum manusia dikumpulkan. Konsentrasi serum piridoksal 5'-fosfat, bentuk aktif dari vitamin B-6, diukur dengan menggunakan HPLC. Serum (100 uL) yang deproteinized dengan penambahan asam perklorat. Precolumn derivatisasi dilakukan dengan potasium sianida. Turunan sianida neon terdeteksi oleh fluorometry (Model FP-1520, Jasco) dengan panjang gelombang untuk eksitasi pada 318 nm dan emisi di 418 nm. Kolom HPLC analitis adalah Alltech 3 m ODS (C 18 ), dengan kolom penjaga dikemas dengan 40 m C 18 bahan (Alltech). Fase gerak adalah 50 mmol / L penyangga kalium fosfat (pH 3,2) yang mengandung 50 mmol / L natrium perklorat dan mmol / L asam sulfonat heptana. Konsentrasi terdeteksi minimum adalah 2 nmol / L. Nilai cutoff diterbitkan untuk menentukan konsentrasi kekurangan mikronutrien yang digunakan.

Analisis statistik.

Uji statistik deskriptif diterapkan untuk variabel biologis, demografi dan sosial ekonomi, dan biokimia ibu. Usia ibu, usia kehamilan saat pengumpulan sampel, BMI (dihitung sebagai kg / m 2 ), dan variabel biokimia diperlakukan sebagai variabel kontinu, dan diet dan musim diperlakukan sebagai variabel kategori.
Proporsi wanita dengan status kekurangan dihitung untuk tunggal dan ganda mikronutrien. Kami mendefinisikan 4 musim sebagai berikut: Spring (Maret-Mei), musim panas (Juni-Agustus), Fall (September-November), dan musim dingin (Desember-Februari). Analisis univariat dilakukan untuk meneliti hubungan antara musim dan status mikronutrien. Kami melakukan regresi linear bertahap analisis untuk menilai variasi musiman dalam konsentrasi mikronutrien menggunakan Spring sebagai musim referensi. Usia ibu, usia kehamilan, BMI, paritas, penggunaan tembakau dan alkohol, status sosial ekonomi, dan etnis yang disesuaikan dalam model. Prevalensi defisiensi mikronutrien ditentukan untuk setiap musim, dan perbedaan yang signifikan antara prevalensi dinilai dengan menggunakan χ 2 analisis. Hasilnya dinyatakan sebagai sarana ± SD, dan P -nilai dari <0,05 dianggap signifikan. Analisis statistik dilakukan dengan menggunakan software SAS versi 8.2 (SAS Institute).

HASIL

Selama periode 2 y, 1316 (26,3%) dari total 4.996 wanita hamil yang memenuhi syarat untuk pendaftaran ke dalam substudy persidangan. Dari jumlah tersebut, 1.165 (88,5%) setuju untuk menarik darah vena pada awal, dan beberapa lagi setuju untuk tusukan jari ( n = 67) yang memungkinkan kita untuk melakukan penilaian Hb pada total 1.232 (93,6%) perempuan. Ukuran sampel bervariasi di seluruh penentuan mikronutrien ( n = 1158-1165) karena jumlah yang tidak memadai serum dalam beberapa kasus.
Usia ibu dan usia kehamilan pada saat pendaftaran adalah 23,6 ± 6,0 y dan 10,9 ± 4,6 minggu, masing-masing; 26% dari perempuan nulipara. Para wanita terhambat dengan ketinggian 150,5 ± 5,5 cm; 14% berada di bawah nilai cutoff dari 145 cm ( 21 ). Subyek juga tipis dan terbuang dengan MUAC dari 21,9 cm, dan BMI 19,3 kg / m 2 .
Konsentrasi serum mikronutrien terdistribusi normal selama awal kehamilan kecuali untuk riboflavin, vitamin B-12, asam folat, dan ferritin, yang sedikit miring ke kiri ( Tabel 1 ).
TABEL 1
Berarti, median, dan persentil distribusi konsentrasi serum vitamin, mineral, dan indeks Hb antara ibu hamil Nepal pada trimester 1
Menggunakan didefinisikan nilai cutoff ( 7 , 13 , 22 - 29 ), prevalensi kekurangan vitamin A, E, dan D adalah 7, 25, dan 14%, masing-masing. Hampir sepertiga dari wanita yang kekurangan riboflavin, dan 40 dan 28% memiliki serum vitamin B-6 dan B-12 kekurangan masing-masing. Hanya 12% dari wanita yang kekurangan folat, tapi 61% adalah kekurangan seng. Prevalensi konsentrasi besi serum rendah adalah 40%, sedangkan 33% adalah anemia (hemoglobin <110 g / L). Beberapa kekurangan mikronutrien yang umum di kalangan wanita hamil. Lebih dari 10% dari wanita hamil berdua anemia dan kekurangan vitamin B kompleks, sedangkan 22% wanita berdua anemia dan kekurangan seng. Karena kekurangan seng adalah defisiensi mikronutrien yang paling umum, terjadi pada ~60% perempuan, itu juga yang paling sering kekurangan mikronutrien hidup bersama ( Tabel 2 ). Hanya 4% perempuan tidak memiliki kekurangan, sedangkan 14,3, 21,5, 20,6, 21,9, dan 17,7 memiliki 1, 2, 3, 4, atau 5 atau lebih kekurangan masing-masing (data tidak ditampilkan). Wanita yang kekurangan nutrisi tertentu lebih mungkin untuk memiliki kekurangan mikronutrien lainnya ( Tabel 3 ). Misalnya, di antara perempuan dengan kekurangan vitamin A, proporsi yang lebih tinggi adalah kekurangan vitamin E (70%), vitamin B-6 (52%), atau riboflavin (44%) atau tidak anemia (49%) relatif terhadap keseluruhan prevalensi ini dalam populasi. Prevalensi defisiensi mikronutrien berbeda dengan musim ( Tabel 4 ). Secara keseluruhan, sebagian defisiensi mikronutrien dinilai cenderung kurang lazim selama musim dingin. Konsentrasi serum retinol secara signifikan lebih rendah di musim hujan panas dan lembab (April-September), sedangkan β-karoten dan vitamin B-6 konsentrasi yang lebih tinggi di musim panas dan musim dingin daripada di musim lainnya ( Gbr. 1 ). Seperti yang diharapkan, tingkat vitamin D yang paling rendah di musim dingin dan tertinggi di musim panas (Juni-Agustus) dan musim gugur (September-November). Konsentrasi seng serum lebih tinggi pada musim gugur dan lebih rendah di musim panas. Analisis regresi berganda juga mengungkapkan bahwa dengan pengecualian vitamin D dan tembaga, perempuan memiliki status zat gizi mikro yang lebih baik selama musim dingin (Desember-Februari) daripada di musim lainnya (data tidak ditampilkan).
TABEL 2
Prevalensi kekurangan bersamaan 2 mikronutrien pada wanita hamil Nepal pada trimester 1 1
TABEL 3
Prevalensi defisiensi mikronutrien pada wanita hamil Nepal pada trimester 1 dengan adanya kekurangan mikronutrien indeks 1
TABEL 4
Prevalensi defisiensi mikronutrien oleh musim kalangan wanita hamil Nepal pada trimester 1 1, 2
GAMBAR 1
Lihat versi yang lebih besar:
GAMBAR 1
Variasi musiman dalam mean konsentrasi serum mikronutrien pada wanita hamil Nepal pada trimester 1 selama 2-y dari Desember 1998 sampai April 2001. Seperti yang ditunjukkan pada tombol angka, konsentrasi beberapa nutrisi yang disesuaikan dengan skala: tingkat retinol disesuaikan ke atas oleh faktor 10, β-karoten dengan faktor 100, dan seng dengan faktor 2, sedangkan konsentrasi vitamin D disesuaikan ke bawah dengan faktor 2 dan vitamin B-12 dengan faktor 10.

PEMBAHASAN

Dalam penelitian ini kami mencatat bahwa prevalensi beberapa kekurangan mikronutrien adalah umum di kalangan wanita pada trimester 1 kehamilan di Nepal pedesaan, kemungkinan mencerminkan ketidakmampuan makanan saat mereka memasuki kehamilan. Karena status zat gizi mikro dinilai pada usia kehamilan 10,9 ± 4,6 minggu, efek pengganggu dari hemodilusi yang puncak pada trimester ke-3 ( 30 , 31 ) adalah mungkin minimal.
Penelitian ini memiliki beberapa keunggulan dibandingkan penelitian sebelumnya yang meneliti status mikronutrien selama kehamilan. Selain memiliki ukuran sampel yang besar, berbagai mikronutrien diperiksa secara bersamaan dalam studi berbasis masyarakat, sehingga estimasi tingkat defisiensi mikronutrien ibu pada awal kehamilan dalam pengaturan Nepal pedesaan ini. Selain itu, kami melaporkan sejauh mana beberapa kekurangan hidup berdampingan, data yang langka dalam pengaturan negara berkembang pedesaan. Hasil penelitian ini juga memiliki potensi untuk memberikan nilai referensi berharga untuk menilai status gizi. Namun, penilaian vitamin dan status mineral selama kehamilan rumit karena ada kurangnya indeks laboratorium kehamilan khusus untuk evaluasi gizi ( 6 ), dan kehamilan itu sendiri dapat mengubah "normal" nilai-nilai ( 9 ) independen dari efek hemodilusi . Selain itu, karena kurangnya standarisasi nilai cutoff uji dan berbeda untuk menentukan statusnya kekurangan, prevalensi kekurangan gizi dapat bervariasi antara studi.
Memadainya nutrisi tunggal kemungkinan besar terkait dengan kekurangan mikronutrien lainnya. Studi populasi kami memberikan bukti bahwa wanita hamil pedesaan di Asia Selatan cenderung menderita beberapa kekurangan. Hal ini terbukti dari perkiraan kami yang kekurangan simultan untuk ≥2 mikronutrien yang terkena 82% dari wanita yang memasuki persidangan di awal kehamilan. Kemungkinan kekurangan mikronutrien tertentu lebih tinggi di hadapan spesifik defisiensi mikronutrien lainnya, menunjukkan potensi interaksi metabolisme. Misalnya, di antara wanita dengan kekurangan vitamin A, hampir setengah atau lebih juga memiliki vitamin E, riboflavin, dan vitamin B-6 kekurangan dan anemia, jauh di atas tingkat univariat masing-masing dalam populasi. Bersama, kekurangan ternyata noninteractive juga jelas, disarankan oleh indeks sebanding dan prevalensi bersyarat. Misalnya, vitamin B-kompleks (riboflavin, vitamin B-6 dan B-12) dan kekurangan zat besi yang sebanding terlepas dari kekurangan zinc bersamaan, mungkin berasal sebagian dari defisit makanan bersama sumber makanan yang baik seperti daging, sedikit yang dikonsumsi dalam pengaturan ini (data tidak ditampilkan) dan tempat lain di Asia Selatan pedesaan. Peracikan efek buruk asupan jarang makanan kaya mikronutrien juga diet yang bersifat tinggi inhibitor penyerapan mineral. Phytates, misalnya, yang melimpah di beras dan biji-bijian lainnya, menghambat penyerapan zinc pada khususnya ( 32 ); ini bisa membantu menjelaskan prevalensi lebih tinggi dari defisit nutrisi ini.
Hidup bersama kekurangan gizi bisa mengurangi potensi manfaat suplemen nutrisi tunggal dalam meningkatkan status gizi dan morbiditas ( 33 , 34 ). Peran kekurangan vitamin dalam penyebab anemia digambarkan ( 33 - 36 ). Secara khusus, vitamin A, riboflavin, vitamin B-6, vitamin B-12, dan folat mengerahkan fungsi hematopoietik ( 35 - 37 ), menunjukkan bahwa perempuan anemia harus mungkin dilengkapi tidak hanya dengan besi tetapi juga dengan vitamin A ( 33 ) dan lainnya mikronutrien ( 36 , 37 ). Namun, sedikit yang diketahui tentang interaksi metabolisme zat gizi mikro. Zinc dapat berinteraksi dengan vitamin A untuk mempotensiasi efek vitamin A dalam memulihkan penglihatan pada malam hari pada wanita hamil malam-buta dengan konsentrasi serum seng awal yang rendah ( 38 ).
Diet mayoritas Nepal pedesaan monoton dan rendah dalam sayuran dan sumber hewani ( 39 ); itu sangat tergantung pada sistem pasar yang sebagian besar lokal dan ketersediaan musiman. Di Nepal, pada periode sebelum musim hujan, ketersediaan buah dan sayuran menurun secara dramatis, menyebabkan kenaikan harga mereka ( 39 ). Musim hujan menyebabkan kekurangan musiman diucapkan, sedangkan sayuran cenderung lebih berlimpah dalam kering, musim pertengahan musim dingin. Variasi seperti ketersediaan, dan biaya, berbagai makanan dapat mempengaruhi status gizi mikro tertentu. Dalam penelitian ini, misalnya, konsentrasi biokimia besar, meskipun tidak semua, mikronutrien dinilai lebih tinggi pada bulan-bulan kering, pertengahan musim dingin. Atau, akhir puncak konsentrasi musim kemarau dalam serum β-karoten dan vitamin B-6 mungkin sesuai dengan panen mangga dan peningkatan ketersediaan pisang pada waktu itu tahun di dataran tenggara Nepal. Sebelumnya, kami menemukan ibu prevalensi kebutaan malam meningkat selama bulan-bulan musim panas sebelum musim hujan, tapi kemudian menurun selama musim mangga singkat pada bulan Juni-Juli ( 40 ), meniru dinamika musiman xeroftalmia yang telah lama dilaporkan antara Selatan anak-anak Asia ( 41 ). Pola musiman di Hb mirip dengan yang dilaporkan oleh Bondevik et al. ( 12 ) pada ibu hamil di rumah sakit di Nepal, di mana prevalensi anemia tertinggi selama dan setelah masa hujan. Tidak ada variasi musiman diamati pada konsentrasi serum vitamin B-12 dan feritin, mirip dengan laporan oleh Ronnenberg et al. ( 7 ) antara perempuan Cina dan Backstrand et al. ( 42 ) di antara wanita Meksiko. Konsentrasi vitamin D memuncak dalam hujan dan musim panas bulan, mungkin dalam menanggapi peningkatan paparan sinar matahari. Paparan sinar UV selama musim hujan mungkin tinggi, meskipun awan, karena penanaman dan kerja pertanian lainnya di mana perempuan mungkin terlibat selama musim ini ( 43 ). Mengetahui berisiko tinggi periode musiman untuk defisiensi mikronutrien ibu dapat membantu dalam mengembangkan dan menargetkan intervensi untuk kontrol mereka.
Singkatnya, kami melaporkan di sini prevalensi populasi status ibu yang rendah dan kekurangan terhadap beberapa mikronutrien di dataran selatan Nepal, berdasarkan diterbitkan serum nilai konsentrasi cutoff. Kami menemukan bahwa> 80% wanita dipamerkan bukti ≥2 defisiensi mikronutrien, dan musiman yang nyata dan berbeda-beda mempengaruhi status ibu, kemungkinan terkait dengan musiman makanan yang kaya zat gizi mikro serta faktor risiko epidemiologi potensial lainnya (misalnya, infeksi). Karena temuan mencerminkan status ibu pada trimester 1 kehamilan, mereka mungkin juga diambil untuk mewakili beban defisiensi mikronutrien pada wanita pedesaan usia reproduksi pada populasi ini, dan memberikan bimbingan daerah pada pendekatan dan waktu untuk mengontrol beberapa defisiensi mikronutrien awal kehamilan dan selama tahun-tahun reproduksi di Asia Selatan pedesaan.

Ucapan Terima Kasih

Selain penulis, anggota berikut tim peneliti Nepal membantu dalam keberhasilan pelaksanaan penelitian: Steven C. LeClerq, Sharada Ram Shrestha dan Jonne Katz; Manajer Lapangan Tirtha Raj Shakya dan Rabindra Shrestha; Bidang Pengawas Uma Shankar Sah, Arun Bhetwal, Gokarna Subedi, dan Dhrub Khadka; dan Laboratorium Scientist Tracey Wagner untuk melakukan analisis laboratorium. Terima kasih khusus kepada tim phlebotomists atas kerja keras mereka dalam melakukan pengumpulan darah rumahan, yang membuat analisis ini mungkin; Elizabeth K. Pradhan dan Gwendolyn Clemens untuk pemrograman komputer dan pengelolaan data; Ravi Ram, Seema Rai, dan Sunita Pant untuk membersihkan dan pengawasan data.

Catatan kaki

  • 1 Karya ini dilakukan oleh Center for Human Nutrition, Departemen Kesehatan Internasional dari Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, bekerjasama dengan Perhimpunan Nasional untuk Pencegahan Kebutaan, Kathmandu, Nepal, di bawah yang Mikronutrien untuk Perjanjian Kesehatan Koperasi No. HRN-A-00-97-00015-00 dan Global Research Kegiatan Koperasi Perjanjian No. GHS-A-00-03-00019-00 antara Hopkins University Johns dan Dinas Kesehatan, Penyakit menular dan Gizi, USAID, Washington, DC, dan hibah dari Bill dan Melinda Gates Foundation, Seattle, WA; UNICEF, Kathmandu, Nepal; dan, Sight and Life Research Institute, Baltimore, MD.
  • 3 Singkatan digunakan: Hb, hemoglobin; MUAC, pertengahan lengan atas lingkar; NIST, Institut Nasional Standar dan Teknologi.

Micronutrient Deficiencies in Early Pregnancy Are Common, Concurrent, and Vary by Season among Rural Nepali Pregnant Women


icronutrient Deficiencies in Early Pregnancy Are Co

mmon, Concurrent, and Vary by Season among Rural Nepali Pregnant Women1
  1. Keith P. West Jr
  1. Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, and
  2. *Nepal Nutrition Intervention Project-Sarlahi (NNIPS), Nepal Netra Jyoti Sangh, Tripureswor, Kathmandu, Nepal
  1. 2To whom correspondence should be addressed. E-mail: pchristi{at}jhsph.edu.

Abstract

Pregnant women in developing countries are vulnerable to multiple micronutrient deficiencies. We investigated their prevalence and seasonal variation as part of a baseline assessment in a population-based, maternal micronutrient supplementation trial conducted in the rural Southeastern plains of Nepal. Serum concentrations of 11 micronutrients were assessed in 1165 pregnant women in the 1st trimester before supplementation. Using defined cutoff values, the prevalence of deficiencies of vitamins A, E, and D were 7, 25, and 14%, respectively. Nearly 33% of the women were deficient in riboflavin, and 40 and 28% had serum vitamin B-6 and B-12 deficiencies, respectively. Only 12% of the women were folate deficient, but 61% were zinc deficient. The prevalence of low serum iron concentration was 40%, and 33% were anemic (hemoglobin < 110 g/L). Multiple micronutrient deficiencies were common among pregnant women. Over 10% of the pregnant women were both anemic and deficient in B-complex vitamins, whereas 22% of women were both anemic and zinc deficient. Only 4% of women had no deficiency, whereas ∼20% of the women had 2, 3, or 4 deficiencies. Almost 18% of women had ≥5 deficiencies. Micronutrient status varied by season; it was generally best during the winter months, except for serum vitamin D concentration, which peaked during the hot summer and monsoon months. Women in rural South Asia are likely to begin a pregnancy with multiple micronutrient deficiencies that may vary with seasonality in micronutrient-rich food availability.
Micronutrient deficiency in women of reproductive age is recognized as a major public health problem in many developing countries (14). Pregnant women are particularly vulnerable to nutritional deficiencies because of the increased metabolic demands imposed by pregnancy involving a growing placenta, fetus, and maternal tissues, coupled with associated dietary risks (5,6). In turn, maternal undernutrition may predispose a mother to poor health, including infection, pre-eclampsia/eclampsia, and adverse pregnancy outcomes such as premature birth and intrauterine growth retardation (1,2). Micronutrient deficiencies tend to coexist in impoverished settings in part because of uniformly low consumption of foods rich in multiple micronutrients.
Maternal iron deficiency and consequent anemia comprise a major problem in developing countries, affecting >50% of women during pregnancy (13). Other micronutrient deficiencies are likely to be widely prevalent, especially those of iodine, zinc, vitamin A, and the vitamin B-complex (13,7). However, little information is available on the extent and severity of multiple micronutrient deficiencies during pregnancy in community-based studies (8,9). Most data on vitamin status are from select populations, hospital-based settings, or are from cross-sectional studies in which nutrient status was assessed at varying single time points during gestation. Because marginal micronutrient deficiency in the 1st trimester could lead to more severe deficiency later on due to stresses imposed by pregnancy and parturition (10), nutritional status in early pregnancy may be an important predictor of nutritional risk in late pregnancy (8). In addition, seasonality appears to markedly influence the prevalence of deficiency (7,11,12), which may sometimes result in unexpected patterns and interpretation of micronutrient deficiencies.
In previous studies, we documented a high prevalence of vitamin A and iron deficiency anemia among Nepali pregnant women (1315) at various stages of pregnancy. In the present study, we investigated the prevalence of deficiency for vitamins A, E, D, riboflavin, B-6, B-12, folate, zinc, iron, and copper during early pregnancy (<12 wk) in a rural population of Nepalese pregnant women using published serological cutoff values. The coexistence of multiple deficiencies and seasonal variations in micronutrient status were also examined.

SUBJECTS AND METHODS

Study design and population.

The present study utilized baseline data collected from a double-masked, cluster-randomized, controlled trial conducted in the Southeastern plains District of Sarlahi, Nepal, from December 1998 to April 2001 (15,16). The main objectives of the trial were to ascertain the effect of daily maternal supplementation with folic acid, folic acid + iron, folic acid + iron + zinc, and a multiple micronutrient formulation, all with vitamin A, compared with an active placebo (containing vitamin A alone), on reducing low birth weight, fetal loss, and infant mortality and morbidity. The study was approved by the ethical review committees of the Ministry of Health in Nepal and the Johns Hopkins Bloomberg School of Public Health in Baltimore, MD.
To identify pregnancies in early gestation, all eligible women of reproductive age (married women, 15–45 y of age who were not menopausal, sterilized, or not already breast-feeding an infant < 12 mo of age) in the study area were visited every 5 wk and monitored for pregnancy. Pregnancy was ascertained with a urine test (human chorionic gonadotrophin antigen test; Clue, Orchid Biomedical Systems) among women who had reportedly not menstruated in the past 30 d. Women who tested positive were enrolled after obtaining consent. At enrollment, newly identified pregnant women were administrated a baseline interview to obtain data on 1-wk frequencies of symptoms of morbidity, intake of food, alcohol, and tobacco use, and information on household socioeconomic status. Anthropometric measurements included weight, height and mid-upper arm circumference (MUAC)3 measurements.
Of 30 village development communities, comprising approximately one third of the total in the study area, 9 were selected to represent different geographic and ethnic communities; all had reasonable access to the main roads and relative proximity to the project laboratory. Women from these communities were invited to participate in a substudy involving venous blood collection for subsequent serum analysis of micronutrient status twice during pregnancy, before supplementation and in the third trimester. The samples were drawn via venipuncture and collected into 7-mL trace metal-free vacuum test tubes (Vacutainer, Becton Dickinson). The vacutainers containing blood were kept on ice and brought to the clinic where they were centrifuged at 750 × g for 20 min to separate the serum. Serum aliquots were placed into trace element–free cryotubes (Nalgene Company, Sybron International), stored in liquid nitrogen tanks, and shipped to the Johns Hopkins Bloomberg School of Public Health in Baltimore, MD, where they were stored at −80°C before analyses.

Laboratory analysis.

Hemoglobin (Hb) assessment was done on the spot using a homeglobinometer (HemoCue). Serum ferritin concentration was analyzed with ELISA procedures using a commercial fluoroimmunometric assay (DELFIA® Ferritin, Perkin Elmer Wallac). The interassay CV for ferritin was ∼5%, using pooled serum samples. Serum iron, zinc, and copper concentrations were analyzed by atomic absorption spectrometry (AAnalyst 600, Perkin Elmer). Serum folate was measured by a microbiological assay in 96-well microplates using a chloramphenicol-resistant strain of Lactobacillus rhamnosus (NCIMB 10463) (17). Serum vitamin B-12 was determined by a microbiological assay in 96-well microplates using a colistin-sulfate-resistant strain of Lactobacillus lactis (NCIMB 12519) (18,19). Both microorganisms were cryopreserved and the cultures were stable for many months. The interassay CVs for folate and vitamin B-12 were 7.6 and 8.4%, respectively. Serum 25-hydroxyvitamin D concentration was used to evaluate the vitamin D status, determined by an immunoassay method with kits from the Nichols Institute. The inter- and intra-assay CVs were 16.4 and 5.6%, respectively.
Serum retinol, β-carotene, and α-tocopherol were determined simultaneously by a reverse-phase HPLC (Beckman, System Gold) attached to an autosampler (717 Plus AS, Waters) using a procedure described by Yamini et al. (20) with modifications. The internal standard used was all-trans-ethyl-β-apo-8′-carotenoate (Fluka Chem). The column (Allsphere ODS-2, 3 μm, 150 × 4.6 mm, Alltech Associate) was eluted isocratically with a mobile phase consisting of 84% acetonitrile, 14% tetrahydrofuran, 6% methanol (added 0.2% ammonium acetate), and 0.1% triethylamine. Quality control was maintained by repeated analyses of standard reference material (SRM, 968c, the National Institute of Standards and Technology, NIST, Gaithersburg, MD) and pooled reference standards. The precision and accuracy of the method were also assessed through participation in the Micronutrients Measurement Quality Assurance Program of Round Robin Proficiency Testing from the NIST, in which 12 “unknown” samples are analyzed and submitted yearly for the entire study period.
Serum riboflavin concentration was determined as a surrogate for riboflavin using reverse-phase HPLC (model 1100, Agilent Technologies) with a fluorescence detector (Model FP-1520, Jasco). Before HPLC, 50 μL of serum was deproteinized using trichloroacetic acid, and the supernatant was heated for 15 min. HPLC was performed using C18-coated silica column (Alltech) with a mobile phase consisted of 65% (v:v) 5 mmol/L ammonium acetate and 35% (v:v) methanol. Fluorescence excitation and emission wavelengths were 460 and 525 nm, respectively. The minimum detectable concentration was 0.35 nmol riboflavin/L. Intra- and interassay CVs were 1.5 and 4.8%, respectively, using pooled human serums. The serum concentration of pyridoxal 5′-phosphate, the active form of vitamin B-6, was measured using HPLC. The serum (100 μL) was deproteinized by the addition of perchloric acid. Precolumn derivatization was performed with potassium cyanide. The fluorescent cyanide derivatives were detected by fluorometry (Model FP-1520, Jasco) with wavelengths for excitation at 318 nm and for emission at 418 nm. The analytical HPLC column was an Alltech 3 μm ODS (C18), with a guard column packed with 40 μm C18 material (Alltech). The mobile phase was 50 mmol/L potassium phosphate buffer (pH 3.2) containing 50 mmol/L sodium perchlorate and mmol/L heptane sulfonic acid. The minimum detectable concentration was 2 nmol/L. Published cutoff values for defining deficient concentrations of micronutrients were used.

Statistical analysis.

Descriptive statistical tests were applied to maternal biological, demographic and socioeconomic, and biochemical variables. Maternal age, gestational age at sample collection, BMI (calculated as kg/m2), and biochemical variables were treated as continuous variables, and diet and seasons were treated as categorical variables.
The proportion of women with deficient status was calculated for single and multiple micronutrients. We defined the 4 seasons as follows: Spring (March–May), Summer (June–August), Fall (September–November), and Winter (December–February). Univariate analyses were done to examine the association between season and micronutrient status. We performed step-wise multiple linear regression analyses to assess seasonal variation in micronutrient concentration using Spring as the reference season. Maternal age, gestational age, BMI, parity, tobacco and alcohol use, socioeconomic status, and ethnicity were adjusted in the model. The prevalence of micronutrient deficiency was determined for each season, and significant differences among the prevalence were assessed using χ2 analyses. The results were expressed as means ± SD, and a P-value of <0.05 was considered significant. Statistical analyses were performed using SAS software version 8.2 (SAS Institute).

RESULTS

Over a period of 2 y, 1316 (26.3%) of a total of 4996 pregnant women were eligible for enrollment into the substudy of the trial. Of these, 1165 (88.5%) agreed to a venous blood draw at baseline, and a few more agreed to a finger prick (n = 67) allowing us to do Hb assessments on a total of 1232 (93.6%) women. Sample size varied across the micronutrient determinations (n = 1158–1165) because of inadequate quantities of serum in some cases.
Maternal age and gestational age at enrollment were 23.6 ± 6.0 y and 10.9 ± 4.6 wk, respectively; 26% of the women were nulliparous. The women were stunted with a height of 150.5 ± 5.5 cm; 14% were below the cutoff value of 145 cm (21). Subjects were also thin and wasted with a MUAC of 21.9 cm, and BMI of 19.3 kg/m2.
Serum micronutrient concentrations were normally distributed during early pregnancy except for riboflavin, vitamin B-12, folate, and ferritin, which were slightly skewed to the left (Table 1).
View this table:
TABLE 1
Mean, median, and percentile distributions of serum concentrations of vitamins, trace minerals, and Hb indices among Nepalese pregnant women in the 1st trimester
Using defined cutoff values (7,13,2229), the prevalence of deficiencies of vitamins A, E, and D were 7, 25, and 14%, respectively. Nearly one third of the women were deficient in riboflavin, and 40 and 28% had serum vitamin B-6 and B-12 deficiencies, respectively. Only 12% of the women were folate deficient, but 61% were zinc deficient. The prevalence of low serum iron concentration was 40%, whereas 33% were anemic (hemoglobin < 110 g/L). Multiple micronutrient deficiencies were common among pregnant women. Over 10% of the pregnant women were both anemic and deficient in B-complex vitamins, whereas 22% of women were both anemic and zinc deficient. Because zinc deficiency was the most common micronutrient deficiency, occurring in ∼60% of women, it was also the most frequent coexisting micronutrient deficiency (Table 2). Only 4% of women had no deficiency, whereas 14.3, 21.5, 20.6, 21.9, and 17.7 had 1, 2, 3, 4, or 5 or more deficiencies, respectively (data not shown). Women who were deficient in certain nutrients were more likely to have other micronutrient deficiencies (Table 3). For example, among the women with vitamin A deficiency, a higher proportion was deficient in vitamin E (70%), vitamin B-6 (52%), or riboflavin (44%) or were anemic (49%) relative to the overall prevalence of these in the population. The prevalence of micronutrient deficiencies differed by season (Table 4). Overall, most micronutrient deficiencies assessed tended to be less prevalent during the winter season. Serum retinol concentrations were significantly lower in the hot and humid monsoon season (April–September), whereas β-carotene and vitamin B-6 concentrations were higher in summer and winter than in other seasons (Fig. 1). As expected, vitamin D levels were lowest in the winter months and highest in summer (June–August) and fall (September–November). Serum zinc concentrations were higher in fall and lower in summer. Multiple regression analysis also revealed that with the exception of vitamin D and copper, women had better micronutrient status during the winter months (December–February) than in the other seasons (data not shown).
View this table:
TABLE 2
The prevalence of concurrent deficiencies of 2 micronutrients among Nepalese pregnant women in the 1st trimester1
View this table:
TABLE 3
Prevalence of micronutrient deficiencies among Nepalese pregnant women in the 1st trimester by the presence of an index micronutrient deficiency1
View this table:
TABLE 4
The prevalence of micronutrient deficiency by season among Nepalese pregnant women in the 1st trimester1, 2
FIGURE 1
Seasonal variation in mean serum micronutrient concentrations among Nepalese pregnant women in the 1st trimester over a 2-y period from December 1998 until April 2001. As shown on the figure keys, concentrations of some nutrients were adjusted to scale: retinol level was adjusted upward by a factor of 10, β-carotene by a factor of 100, and zinc by a factor of 2, whereas vitamin D concentration was adjusted downward by a factor of 2 and vitamin B-12 by a factor of 10.

DISCUSSION

In the present study we documented that the prevalence of multiple micronutrient deficiencies was common among women in the 1st trimester of pregnancy in rural Nepal, likely reflecting dietary inadequacy as they entered pregnancy. Because micronutrient status was assessed at a gestational age of 10.9 ± 4.6 wk, the confounding effect of hemodilution that peaks in the 3rd trimester (30,31) was likely to be minimal.
The present study has several advantages over previous studies that examined micronutrient status during pregnancy. Apart from having a large sample size, a wide range of micronutrients was examined simultaneously in a community-based study, allowing estimation of the extent of maternal micronutrient deficiencies in early pregnancy in this rural Nepali setting. In addition, we report the extent to which multiple deficiencies coexist, data that are scarce in rural developing country settings. The results of the present study also have the potential to provide valuable reference values for assessing nutritional status. However, the assessment of vitamin and mineral status during pregnancy is complicated because there is a general lack of pregnancy-specific laboratory indices for nutritional evaluation (6), and pregnancy itself may alter “normal” values (9) independently of the effects of hemodilution. Furthermore, because of the lack of standardization of the assay and different cutoff values to define deficient status, the prevalence of a nutrient deficiency may vary between studies.
Inadequacy of a single nutrient is most likely associated with deficiencies of other micronutrients. Our population study provides evidence that rural pregnant women in South Asia are likely to suffer from multiple deficiencies. This was evident from our estimate that simultaneous deficiencies for ≥2 micronutrients affected 82% of women who entered the trial early in pregnancy. The likelihood of certain micronutrient deficiencies was higher in the presence of specific other micronutrient deficiencies, suggesting potential metabolic interactions. For example, among women with vitamin A deficiency, nearly half or more also had vitamin E, riboflavin, and vitamin B-6 deficiencies and were anemic, substantially above their respective univariate rates in the population. Joint, apparently noninteractive deficiencies were also evident, suggested by comparable index and conditional prevalences. For example, B-complex vitamin (riboflavin, vitamins B-6 and B-12) and iron deficiencies were comparable irrespective of concurrent zinc deficiency, possibly derived in part from a shared dietary deficit of good food sources such as meat, little of which is consumed in this setting (data not shown) and elsewhere in rural South Asia. Compounding the adverse effects of infrequent intake of micronutrient-rich foods is also a diet that is characteristically high in inhibitors of mineral absorption. Phytates, for example, which are abundant in rice and other grains, inhibit zinc absorption in particular (32); this could help explain the higher prevalence of this nutrient deficit.
Coexisting nutritional deficiencies could reduce the potential benefit of a single nutrient supplement in improving nutrition status and morbidity (33,34). The role of vitamin deficiencies in the etiology of anemia was described (3336). Specifically, vitamin A, riboflavin, vitamin B-6, vitamin B-12, and folate exert hematopoietic function (3537), suggesting that anemic women should possibly be supplemented not only with iron but also with vitamin A (33) and other micronutrients (36,37). However, less is known about metabolic interactions of micronutrients. Zinc may interact with vitamin A to potentiate the effect of vitamin A in restoring night vision among night-blind pregnant women with low initial serum zinc concentrations (38).
The diet of the majority of rural Nepalese is monotonous and low in vegetables and animal sources (39); it is highly dependent on a largely local market system and seasonal availability. In Nepal, in the period before the monsoon season, the availability of fruit and vegetables drops dramatically, causing an increase in their prices (39). The rainy monsoon season causes pronounced seasonal shortages, whereas vegetables tend to be more abundant in the dry, mid-winter season. Such variation in availability, and cost, of various foods can affect the status of certain micronutrients. In the present study, for example, biochemical concentrations of most, although not all, assessed micronutrients were higher in the dry, mid-winter months. Alternatively, late dry season concentration peaks in serum β-carotene and vitamin B-6 presumably correspond to the mango harvest and to increased banana availability at that time of year in the southeastern plains of Nepal. Previously, we found maternal night blindness prevalence to increase during the hot summer months before the monsoon season, but then to decline during the short mango season in June–July (40), mimicking the seasonal dynamic in xerophthalmia that has long been reported among South Asian children (41). A seasonal pattern in Hb was similar to that reported by Bondevik et al. (12) in pregnant women in a hospital setting in Nepal, in which the prevalence of anemia was highest during and after the monsoon period. No seasonal variation was observed in serum concentrations of vitamin B-12 and ferritin, similar to reports by Ronnenberg et al. (7) among Chinese women and Backstrand et al. (42) among Mexican women. Vitamin D concentrations peaked in the monsoon and hot summer months, presumably in response to increased exposure to sunlight. Exposure to UV light during the monsoon season may be high, despite cloud cover, because of the planting and other agricultural work in which women may be involved during this season (43). Knowing the high-risk seasonal periods for maternal micronutrient deficiencies can aid in developing and targeting interventions for their control.
In summary, we report here the population prevalence of low and deficient maternal status with respect to multiple micronutrients in the Southern plains of Nepal, based on published serum concentration cutoff values. We found that >80% of women exhibited evidence of ≥2 micronutrient deficiencies, and that seasonality can markedly and differentially influence maternal status, likely associated with seasonality of micronutrient-rich foods as well as other potential epidemiologic risk factors (e.g., infection). Because the findings reflect maternal status in the 1st trimester of pregnancy, they may be also taken to represent the burden of micronutrient deficiency in rural women of reproductive age in this population, and provide regional guidance on approaches and timing to the control of multiple micronutrient deficiencies early in pregnancy and throughout the reproductive years in rural South Asia.

Acknowledgments

Apart from the authors, the following members of the Nepal study team helped in the successful implementation of the study: Steven C. LeClerq, Sharada Ram Shrestha and Jonne Katz; Field Managers Tirtha Raj Shakya and Rabindra Shrestha; Field Supervisors Uma Shankar Sah, Arun Bhetwal, Gokarna Subedi, and Dhrub Khadka; and Laboratory Scientist Tracey Wagner for conducting laboratory analyses. Special thanks to the team of phlebotomists for their hard work in conducting home-based blood collection, which made this analysis possible; Elizabeth K. Pradhan and Gwendolyn Clemens for computer programming and data management; Ravi Ram, Seema Rai, and Sunita Pant for data cleaning and supervision.

Footnotes

  • 1 This work was carried out by the Center for Human Nutrition, the Department of International Health of the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, in collaboration with the National Society for the Prevention of Blindness, Kathmandu, Nepal, under the Micronutrients for Health Cooperative Agreement No. HRN-A-00-97-00015-00 and the Global Research Activity Cooperative Agreement No. GHS-A-00-03-00019-00 between the Johns Hopkins University and the Office of Health, Infectious Diseases and Nutrition, United States Agency for International Development, Washington, DC, and grants from the Bill and Melinda Gates Foundation, Seattle, WA; UNICEF, Kathmandu, Nepal; and, the Sight and Life Research Institute, Baltimore, MD.
  • 3 Abbreviations used: Hb, hemoglobin; MUAC, mid-upper arm circumference; NIST, the National Institute of Standards and Technology.